
Fault-Tolerant Quantum Computation

Essay for Part III of the Mathematical Tripos

Miles D. Gorman

Department of Applied Mathematics and Theoretical Physics
University of Cambridge

May 2023



Contents

1 Introduction 3

2 Quantum Error Correction and Fault Tolerance 4
2.1 Quantum Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Logical Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Syndrome Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.5 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.6 Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Idea of Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Definition of Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Fault-Tolerant Constructions and Thresholds 13
3.1 A Fault Tolerant Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Concatenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 Fault-Tolerant Gadgets . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Threshold Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Computing Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Conclusion 30

References 32

2



1
Introduction

Certain algorithms can leverage quantum phenomena to achieve a speedup over their best-
known classical counterparts. The upshot of this is that these quantum algorithms offer a
means of computing solutions to problems that might otherwise be intractable [1]. Because
quantum algorithms are underpinned by quantum physics, their implementation requires a
physical platform that is also ‘quantum’: namely, they need a quantum computer. Quantum
computers are fundamentally different from the already well-developed (classical) computers
we are used to, and are challenging to realize in part due to how delicate they are to noise.

Noise inevitably arises from various physical sources and is often modeled by errors,
which are unintended operations that can significantly reduce the reliability of a computer’s
output [1]. Active techniques are generally required to overcome quantum errors and achieve
accurate and meaningful quantum computations. In fact, at the time of writing (2023), noise
is perhaps the greatest obstacle to realizing useful quantum computers.

This essay focuses on the active methods that allow for noise-robust quantum computa-
tions, and is organized as follows: in Chapter 2 I introduce quantum error correction as a
naive way of combating errors. I then show where quantum error correction falls short for
practical purposes, which motivates the definition of its more physically-relevant cousin: fault
tolerance. In Chapter 3, I provide a method for constructing these so-called fault-tolerant
quantum computations and show how this yields the core concept of this essay, the threshold
theorem. The threshold theorem is a remarkable result that demonstrates the feasibility of
quantum computing in a noisy environment: it proves that noisy quantum computations can
be made arbitrarily reliable at an asymptotically-low cost in overhead, provided the hardware
achieves error rates below some threshold. Naturally, these thresholds, which reach as high as
∼ 1% [2], set a target error rate for quantum computing experimentalists to strive for. While
present quantum devices can achieve error rates near this threshold [3, 4], there are further
factors to consider when scaling up quantum computers, which I address later in the essay.
Additionally, I analyze the threshold theorem’s critical assumptions and briefly discuss other
fault-tolerant constructions that lead to different versions of the threshold theorem before
finally concluding in Chapter 4 with a summary and suggestions for future fault-tolerance
research.

3



2
Quantum Error Correction and Fault
Tolerance

In this chapter, I introduce the essay’s necessary background. I will begin with a speed-run of
quantum error correction: explaining each step at a high level before providing pedagogical
examples using the 3-qubit repetition code. I will then introduce fault tolerance, which - in
short - makes quantum error correction practical under more physical error models and leads
to the threshold theorem. More experienced - or more confident - readers may wish to skip
the quantum error correction section as I included it largely to make many of the (perhaps
otherwise abstract) fault-tolerant processes that I will use later in the essay more concrete
and because it offers a natural way of defining requisite terminology and concepts.

Other preliminary comments: in this essay, I will consider stabilizer codes; I will not
introduce the stabilizer formalism [5] but the essay is nonetheless self-contained. I will also
only focus on qubits, which are two-level quantum systems living in a two-dimensional Hilbert
space and are commonly represented in the computational basis (i.e. the Z-eigenbasis)

|0⟩ ≡
(

1
0

)
and |1⟩ ≡

(
0
1

)
. (2.1)

2.1 Quantum Error Correction
There is no ideal realization of quantum computers. Because physical quantum computers
are unavoidably coupled to a noisy environment, their constituting qubits’ states are subject
to unintended evolutions called errors. Without special techniques, said errors are unknown
to the computer’s user, which presents a problem: errors can damage a computation’s output
to such an extent that no meaningful results are retrievable. What’s worse, practical quantum
algorithms generally require many quantum operations - often called gates - and considerable
time (relative to error rates) which introduces a significant amount of noise and makes
errors frequent over the algorithm’s runtime. Indeed, errors undermine potential quantum
advantage and pose a considerable challenge to realizing useful quantum computers.

Quantum error correction aims to build tolerance against errors. Showing how quantum
error correction works will require an explicit form for errors. Here we will assume that errors

4



Name of Operator Representation Action on Basis States

Identity I =
(

1 0
0 1

)
I |a⟩ = |a⟩

Bit-Flip / Pauli-X X =
(

0 1
1 0

)
X |a⟩ = |a⊕ 1⟩

Bit-and-Phase-Flip / Pauli-Y Y =
(

0 −i
i 0

)
Y |a⟩ = i(−1)a |a⊕ 1⟩

Phase-Flip / Pauli-Z Z =
(

1 0
0 −1

)
Z |a⟩ = (−1)a |a⟩

Table 2.1: Pauli-basis generators in the computational basis. i denotes the imaginary unit, ⊕
denotes addition modulo 2, and a ∈ Z2 per Equation 2.1.

are single-qubit unitary transformations. While this is not a completely faithful treatment,
as we will examine in Subsection 3.1.1, it is an instructive starting point. Expanding some
arbitrary unitary error E in the Pauli basis gives

E(αI , αX , αY , αZ) = αII + αXX + αY Y + αZZ (2.2)

where the identity I and Pauli operatorsX, Y , and Z are defined in Table 2.1 and αP ∈{I,X,Y,Z}
are amplitudes that satisfy the normalization of E. Correcting this continuum of possible
errors may seem a daunting task. However, as I will show, specific measurements of the
state can collapse the error E onto either the identity (no error) or a single Pauli operator
(an error). In this way, error correction needs ‘only’ to correct Pauli-Xs and Pauli-Zs
independently on each qubit to correct an erroneous state (up to an unobservable global phase
and noting that Y = iXZ). Here, correct means taking in erroneous data and returning it
without errors (with high probability).

With errors defined, I can explain the error correction process. Following the high-level
depiction of error correction in Figure 2.1a and the example in Figure 2.1b, the steps of error
correction are as follows:

2.1.1 Encoding
An error correction procedure begins with k qubits of data in some state |ψ⟩ that we aim
to protect from noise. Encoding adds redundancy: the input state is fed into an encoder E ,
which is an operation that acts on the input data |ψ⟩ to produce an n ≥ k-qubit state |ψ⟩L,
i.e.

E(|ψ⟩) = |ψ⟩L . (2.3)

To be more explicit, the encoding operation E consists of initializing n − k (redundant)
ancilla qubits and applying a series of gates that are selected according to the desired
quantum error-correcting code, which defines the better-protected logical state |ψ⟩L we want
to produce.

Briefly, a quantum error correcting code is commonly characterized by the parameters n,
k, and d written [[n, k, d]] where n is the total number of qubits, called the physical qubits; k
is the number of qubits of information, called the logical qubits; and d is the code’s distance,
which quantifies the minimum number of non-trivial single-qubit Pauli errors the code can

5



Figure 2.1: (a) a high-level view of quantum error correction circuits and (b) an example using
the 3-qubit repletion code. In quantum circuits, time runs from left to right. Each double black line
represents the path of a classical bit, and the horizontal single black lines each represent a qubit.
Qubits are initialized at the left end of their horizontal line in a state specified by a ket. Here
|ψ⟩ is an arbitrary single-qubit state, defined in Equation 2.4. Qubits then encounter operations.
The first two gates (black dot - control - say on qubit i and cross-hair - target - say on qubit j
joined by a vertical line) are CNOTi,js defined in Equation 2.6. The X gates are Pauli-Xs, defined
in Table 2.1; the PX gates independently apply a Pauli-X to their qubit with some probability
p; the dial in a box is a measurement in the computational basis which projects the state onto a
state consistent with the measurement outcome (that is communicated as a classical bit through
its connected classical wire); and the three I/X gates collectively apply either an identity on all
qubits or a Pauli-X on a single qubit, conditioned on the output of the decoder. For clarity, the
left (right) bit in the syndrome ‘input’ in the decoder is from the left (right) classical wire. Finally,
ignore the yellow lightning bolt; it will be discussed in text when appropriate.

6



correct, or, more precisely, the minimum number of Pauli operators required to map one
logical state of the code |ψ⟩L to another logical state of the code |ψ′⟩L. As such, because
error correction attempts to preserve the information inputted by keeping the computation
in a logical state, we can only hope to correct t = ⌊d−1

2 ⌋ errors, i.e. just under half the
distance. Any more errors could push a logical state |ψ⟩L closer to a different logical state
|ψ′⟩L and hence the procedure, to which the specific errors are unknown but are assumed
to be less likely if there are more, would expect that the closer state |ψ′⟩L is more likely to
have been the information inputted.

To offer enhanced protection against noise, encoded states |ψ⟩L will generally be highly
entangled and have many more physical qubits than logical qubits, n >> k. In a hand-wavy
sense, this results from encoding aiming to delocalize information so that localized errors are
less likely to act directly on the information and corrupt it.

Example 1 (Encoding the 3-Qubit Repetition Code). The 3-qubit repetition code
is a [[3, 1, 1]] code. It encodes a single qubit of information across three qubits. Ad-
ditionally, it has distance 1, meaning it cannot correct even a single arbitrary error.
However, if we restrict our errors to just Pauli-Xs, this code can correct precisely
one error on any of its qubits. (The 3-qubit repetition code’s inability to correct any
arbitrary error renders it impractical for general purposes, but its simplicity helps
introduce error correction.)

The procedure begins with some qubit of data,

|ψ⟩ = α |0⟩ + β |1⟩ (2.4)

where α, β ∈ C satisfy |α|2 + |β|2 = 1. The encoder then initializes two ancilla qubits,
each in the state |0⟩, to produce the 3-qubit state

|ψ⟩ ⊗ |0⟩ ⊗ |0⟩ ≡ |ψ00⟩ (2.5)

where ⊗ is the tensor product. Next, we apply gates of the form

CNOTi,j ≡ |0⟩i ⟨0|i ⊗ Ij + |1⟩i ⟨1|i ⊗Xj (2.6)

using the notation that Oi is the operator O acting on i-th qubit and where implicit
identities act on every other qubit. Encoding gives the state

CNOT1,3CNOT1,2 |ψ00⟩ = α |000⟩ + β |111⟩ ≡ |ψ⟩L . (2.7)

Observe that redundancy is added through repetition: encoding maps |0⟩ → |0⟩L ≡
|000⟩ and |1⟩ → |1⟩L ≡ |111⟩. For instance, if a measurement of the encoded state
reveals |001⟩, something must have gone wrong. Now consider the action of no error
I, and each single-qubit bit-flip error on these |000⟩ and |111⟩ codewords:

I |000⟩ = |000⟩ , X1 |000⟩ = |100⟩ , X2 |000⟩ = |010⟩ , X3 |000⟩ = |001⟩ ,
I |111⟩ = |111⟩ , X1 |111⟩ = |011⟩ , X2 |111⟩ = |101⟩ , X3 |111⟩ = |110⟩ .

(2.8)

Because these erroneous states are unique, they are - in principle - distinguishable.
However, learning the error is a non-trivial task, which we will consider shortly.

7



2.1.2 Logical Operations
After encoding, we feed the logical state |ψ⟩L produced into a logical operation. A logical
operation OL, of some operator O acting on the data |ψ⟩, satisfies

E(O |ψ⟩) = OL |ψ⟩L = |ψ′
O⟩L (2.9)

where E is encoding and |ψ′
O⟩ is a (generally different) logical state of the code that depends

on the operator O. That is, after encoding data, operations similarly need to be encoded:
mapped to operators acting on the state |ψ⟩L that gives the same output state as encoding the
state |ψ⟩ after having the desired operation applied. This results from encoded information
|ψ⟩L being delocalized to protect from local errors: local gates will necessarily no longer act
directly on encoded data. (Although it is irrelevant until the next section, one does not
want to de-encode, apply operations, and re-encode as this will expose the data directly to
uncorrectable (logical) errors.)

Example 2 (A Choice for the 3-Qubit Repetition Code’s Logical X Operator). Before
encoding into the 3-qubit repetition code, we had some logical qubit of information
|ψ⟩, Equation 2.4. Say the algorithm we wanted to implement was simply a Pauli-X,
which maps our data to

X |ψ⟩ = α |1⟩ + β |0⟩ . (2.10)

Encoding this gives

XL |ψ⟩L = α |111⟩ + β |000⟩ . (2.11)

Comparing this expression with |ψ⟩L, Equation 2.7, shows that XL maps |000⟩ ↔
|111⟩. So, XL = X ⊗X ⊗X is a (non-unique) choice for the logical Pauli-X operator
on the 3-qubit repetition code. This gives the ability to perform operations directly
on the protected information, and logical operators for a universal set of gates would
allow arbitrary quantum computations on the encoded data.

2.1.3 Noise
Error correction then assumes that the state undergoes some noise process where it poten-
tially picks up errors. Noise is modeled by a noise channel N , which - to introduce error
correction - we will say acts as

N (|ψ⟩L) = E |ψ⟩L (2.12)

where E is some error operator. We treat noise more rigorously in Subsection 3.1.1.

Example 3 (A Noise Model for the 3-Qubit Repetition Code). Our example applies
bit-flip errors on each qubit independently with probability p directly after logical
operations. (For simplicity in these examples, we will only explicitly consider any
one pure state in an erroneous mixed state. However, these ideas indeed generalize to
mixed states.)

8



2.1.4 Syndrome Extraction
The redundancy afforded by encoding allows for local consistency checks that give a syn-
drome: classical information on the errors afflicting our encoded state. The procedure of
retrieving the syndrome is called syndrome extraction. Syndrome extraction has the afore-
mentioned subtle consequence that, due to its constituting measurements, it projects the
potentially erroneous state onto a state consistent with those measurement outcomes. Ac-
cordingly, because codes are designed to give syndromes with sufficient information to correct
Pauli errors (up to their distance), syndrome extraction effectively projects errors onto Pauli
operators.

Syndrome extraction S acts on an encoded state |ψ⟩L with error E according to

S(E |ψ⟩L) = E ′ |ψ⟩L ⊗ |s⟩ (2.13)

where E ′ is the error that syndrome extraction has projected the original error E onto by
retrieving the syndrome s, a bit string of information on the error E ′. Error correction then
aims to correct the error E ′ and return the encoded data |ψ⟩L using the syndrome s.

Error correction is limited in the number of errors it can correct. This results from the
concern that to avoid losing the potential for quantum computational advantage, we must
perform syndrome extraction in such a way as to not collapse the encoded state to a classical
one. We avoid this collapse by only measuring particular operators of a code, called stabilizer
generators [5, 1], each of which separately arises from one of the n − k redundant ancilla
qubits introduced in encoding [6]. Their corresponding n − k bits of information on the
error reduces the errors’ state space - which is of size O(4n) - by a factor of at most 2−(n−k)

due to the Hamming bound and Shannon information, so there will necessarily be syndrome
degeneracy. (Errors include all possible combinations of identities and the three Paulis over
the code’s n physical qubits, and I use big-O notation here because - not to digress - not all
errors need to be corrected [1].)

Example 4 (Method for Syndrome Extraction on the 3-Qubit Repetition Code). For
the 3-qubit repetition code, we will use the operators S1 = Z1Z2 and S2 = Z2Z3 (a
choice of stabilizer generators for the code) as our local consistency checks in syndrome
extraction. Each of the measurement outcomes of these operators will return a syn-
drome bit, one bit in the syndrome, and so this procedure gives a 2-bit syndrome. Note
also that the operators we are checking, S1 and S2, are independent, so they each give
unique information on the state; they are +1 eigenoperators on the logical states |ψ⟩L

of the code, Equation 2.7, so they leave the logical states unchanged when acting on
them; and S1 (S2) checks that the left (right) two qubits are in the same Z-eigenstate:
if these qubits are (not) in the same Z-eigenstate, Si is a +1 (−1) eigenoperator of
that state, giving a (non-)trivial syndrome bit denoted by ‘0’ (‘1’). Therefore, X er-
rors potentially give non-trivial syndromes. In particular, they give the syndromes
summarised in Table 2.2.

2.1.5 Decoding
A decoder D is a classical algorithm that takes in the syndrome s and returns an estimate
of what error occurred, denoted by bit-string c: specifically,

D(|s⟩) = |c⟩ . (2.14)

9



Error Syndrome
I and X1X2X3 ‘00’
X1 and X2X3 ‘10’
X2 and X1X3 ‘11’
X3 and X1X2 ‘01’

Table 2.2: Syndrome of bit-flip errors on the 3-qubit repetition code. This table is computable
using the method of Example 4. The quotation marks signify that the syndrome is a bit string, and
here I (no error) is the 3-qubit identity. Finally, notice that the syndromes are doubly degenerate.

Non-trivial decoding algorithms are generally required because syndromes are not necessarily
structured such that the errors they imply are immediately apparent.

Example 5 (Look-Up-Table Decoder for the 3-Qubit Repetition Code). The simplest
example of a decoder is the look-up-table decoder, a two-column table with each syn-
drome in one column, and the corrections they imply in the other. Table 2.2 and
Figure 2.1b give look-up-table decoders for the 3-qubit repetition code, where their
estimate of the error is the lowest weight operation corresponding to each syndrome.
The weight of an operator is the number of Pauli operators it contains, so (recalling
that here errors occur independently) this decoder gives us the highest likelihood of
identifying the error and hence the highest chance of returning the state to its original
error-free form.

One thing to note is that look-up-table decoders scale poorly: for an arbitrary
[[n, k, d]] code, the decoder will contain 2n−k rows. This exponential memory overhead
is hard to store and search over. As such, more sophisticated methods for decoding
have been developed to preserve a good deal of accuracy in identifying the most likely
error while reducing the process’ time- and memory-complexity. We return to this
topic in Subsection 3.1.1 and Section 3.2.

2.1.6 Correction
Now that the decoder has identified the error with bit-string c, it is time to correct. Because
the errors we are considering are Pauli operators (Hermitian), to correct C is to apply the
error estimate Ẽ ′. That is,

C(E ′ |ψ⟩L ⊗ |c⟩) = Ẽ ′E ′ |ψ⟩L (2.15)

where E ′ is the error on the logical state |ψ⟩L and Ẽ ′ is the decoder’s estimate of the error E ′.
We say that the procedure succeeds when Ẽ ′E ′ is an eigenoperator (the identity operator,
for example) of the encoded information |ψ⟩L and fails otherwise, as then there would be a
residual (non-trivial) operation on the state.

Example 6 (Error Correction on the 3-Qubit Repetition Code). Putting all the above
steps together, we have a protocol capable of correcting a single-qubit Pauli-X error
on any of its qubits. To show an instance of this, recall from Equation 2.11 that after
the logical operation, the encoded state is

α |111⟩ + β |000⟩ . (2.16)

10



Suppose an X2 error occurs, mapping this state to

α |101⟩ + β |010⟩ . (2.17)

Then syndrome extraction, using Example 4, checks that the Z-eigenstates of neigh-
bouring qubits matches, and, in this case, returns the syndrome ‘11’. From this syn-
drome, the decoder in Figure 2.1b speculates that the error that occurred was X2. So
X2 is applied to the state to give back

α |111⟩ + β |000⟩ : (2.18)

the original logical state before the error, Equation 2.16. The process for correcting X1
and X3 (and I) is similar. Hence error correction is indeed successful in preserving the
logical information under a single bit-flip error. Error correction repeated frequently
- in this model - thus permits the recovery of the logical state with high probability
if the error rate p is low: uncorrectable errors now have probability at least O(p2)
(versus p without error correction).

2.2 Idea of Fault Tolerance
We can identify two issues with quantum error correction using the 3-qubit repetition code
example from the previous section.
1. The code used does not independently correct both a phase- and bit-flip error, as is

required to correct an arbitrary unitary error. Though, this was done for simplicity in
introducing the subject. There do exist codes that facilitate the correction of bit- and
phase-flip errors independently, for example, the Shor code, which is a [[9, 1, 3]] code [1].

2. The error correction model is contrived. In practice, noise is not conveniently confined
to after computation and before syndrome extraction: it is present throughout the whole
circuit. Removing error correction’s unphysical assumption on error locations carries two
subtle but important consequences:

(a) Consider an X error at the yellow lightning bolt in Figure 2.1b. This gives an X2
error on the encoded state and the syndrome of ‘01’, which implies an X3 correction.
In this case, due to a single error and error correction, the encoded state has been
left with two errors; which is problematic because a correctable error has become
uncorrectable. That is, we potentially lose our protection against errors and, in fact,
make things worse by using error correction.

(b) What’s more, errors can potentially propagate through multi-qubit gates (see Fig-
ure 2.2). Errors that grow in weight by this mechanism present the same issue:
they can map an innocuous situation of a correctable error to a scenario where the
computation fails.

These issues with error correction motivate the design of protocols that hinder the spread
of errors. Such protocols are said to be fault tolerant. Fault tolerance preserves a desired
level of error correction even after relaxing the unphysical assumption on where errors can
occur, making it of more practical relevance for robust quantum computing. (Noting that
error correction still has a place in quantum memories and quantum communication, where
the data spends much of its time idling or in transmission, so error correction’s assumption
on the location of errors is often a suitable approximation [7, 8].)

11



Figure 2.2: Heisenberg picture of quantum computing. One can calculate these diagrams by
considering how Paulis commute with CNOT s. For instance, the first diagram is calculated as
(X ⊗ I)CNOT1,2 = CNOT1,2(X ⊗X). All the operators here are Hermitian, so the diagrams are
readable left-to-right or right-to-left. Notice the highlights on the qubit wires, which serve as a
visual aid to see ‘how’ the Paulis propagate. Similar relations hold for other multi-qubit gates.

2.3 Definition of Fault Tolerance
Fault-tolerant models dub any location where an error might spawn as a potential fault
location and any such location that introduces an error as a fault. Error models govern
potential fault locations by determining the probabilities of errors a fault produces. Typically,
there will be a potential fault location on each qubit after each gate, with identity gates
applied to qubits in memory to capture memory errors. Ideal operations are without faults
and will prove useful despite being unphysical.

A circuit giving the same output distribution of logical information as some other circuit
is said to simulate that circuit. A fault-tolerant circuit simulates, with high probability, some
ideal circuit in the presence of noise. More precisely, adopting a definition similar to those
in [9, 10, 11],

Definition 1 (Fault Tolerance). A level-l fault-tolerant encoding FT (l) is a mapping
from an ideal logical circuit C(0) to a level-l fault-tolerant version of that circuit C(l): a
circuit that simulates the ideal circuit C(0) to some desired level of accuracy ϵ > 0, as
controlled by parameter l, under a non-trivial error model E and for any level l larger
or equal to some cutoff l0. That is, a circuit construction aiming for fault tolerance,

FT (l)(C(0)) = C(l), (2.19)

is indeed fault tolerant if it satisfies

||(FT (l))−1 ◦ E ◦ FT (l)(C(0)) − C(0)|| ≤ ϵ (2.20)

for any ϵ > 0, any logical circuit C(0), and any l ≥ l0. A circuit C here is the probability
distribution of the outputted states of said circuit, and so the operations FT (l), E , and
(FT (l))−1 change the distribution of outputted states of their input accordingly. To
be clear, E updates the states to be consistent with some given error model, and
(FT (l))−1 performs ideal error correction and then undoes the level-l fault-tolerant
mapping ideally.

The importance of fault tolerance is captured by this definition: the ability to increase
the level l of a fault-tolerant encoding FT (l) allows for an arbitrarily-close-to-ideal simulation
of any circuit under a given error model. The parameter l is needed because there will be
some (decreasingly small with increasing level l) probability of a malignant error for any
finitely-sized code.

12



3
Fault-Tolerant Constructions and
Thresholds

As a road map for this chapter, I will present a fault-tolerant construction for simulating
ideal circuits, the threshold theorem, and how to compute thresholds.

3.1 A Fault Tolerant Construction
In this section, I will provide the three remaining ingredients needed to present a version
of the threshold theorem: the assumptions; concatenation, which scales the level l of our
fault-tolerant construction; and gadgets, used in our fault-tolerant mapping FT (l).

3.1.1 Assumptions
Here, I explain the assumptions underpinning my essay’s version of the threshold theorem. I
mark assumptions central to a threshold’s existence with a ‘‡’ symbol, and I include further
assumptions - not essential to a threshold’s existence - that simplify the analysis to follow.

The first group of assumptions focuses on gates. Begin by assuming the existence of

1.1.‡ parallel operations: operations in consecutive timesteps - not acting on the same
qubit/s - can be performed simultaneously.

Where a time step is, say, the time of the slowest operation. The crux of this assumption
is necessary for a threshold: if we have n qubits and each one succumbs to errors with an
unacceptably high probability after t time steps, we must operate on at least n/t qubits
per time step to have a chance to compute reliably [7]. So, as the number of qubits in
the computation n increases (for a fixed maximum number of acceptable timesteps t), the
number of qubits acted on in each time step must increase at least linearly in qubit count
n for robust computation. Thus, if we cannot at least operate on some constant fraction of
qubits per time step, the probability of a successful simulation vanishes. In practice, parallel
computations are possible, albeit more challenging, evidenced by parallel gates generally
being accompanied by higher error rates [12].

13



We also use
1.2. long-range multi-qubit gates: any set of qubits can be acted on by multi-qubit gates

regardless of their physical location in a quantum device.

While thresholds exist for fault-tolerant procedures that only require short-range interac-
tions (in low-dimensional geometries) [11, 13], we postulate this assumption because it is
convenient to apply multi-qubit gates however we need. In reality, not all quantum plat-
forms guarantee connectivity between all qubits, though improving connectivity is a focus
of experimental efforts [3]. Indeed, connectivity would need to be considered in analyzing
a fault-tolerant scheme on a particular quantum device. Another factor to consider is that,
given they are performable at all, long-range entangling operations often come with higher
error rates [14].

The next group of assumptions center around mid-computation preparations and mea-
surements. In particular, we require

2.1.‡ on demand ancillas: during the computation, fresh ancilla states can be initialized.

Without this assumption, qubits (now prepared well in advance) are more likely to have
errors by the time they are used, reducing the computation’s reliability. Exacerbating this
issue is the fault-tolerant circuit’s size blow-up, where the circuit’s growth will be so large in
the infinite limit that without specific techniques to resist errors in the ancillas, erroneous
ancilla qubits become inevitable. In fact, without this assumption, fault tolerance would
require the circuit to grow exponentially [15]. Note we cannot avoid this issue: ancilla qubits
are necessary for quantum error correction, following from the interpretation that syndrome
extraction is needed to move the entropy of noisy information onto ancilla qubits which are
then removed from the system to leave the information with (hopefully) less noise.

Architectures can allow ancilla initialization during the computation [16, 17]. However,
doing so comes with challenges. For instance, initializing qubits can take an unpredictable
amount of time - due to relying on post-selection for example - in which case the computation
may either need to wait in memory until ancillas are ready or the ancillas will need to be
prepared well in advance [16, 18]. In either scenario, there is an increased likelihood of errors.
This has led to experimental efforts focused on reducing the state preparation time, reusing
qubits, and making preparation take a consistent amount of time [17, 18]. A more rigorous
analysis would need to consider hardware-dependent factors like this.

To simplify matters, we also want

2.2. mid-circuit measurements: qubits can be measured thought the computation.

This assumption is unnecessary because error correction does not require measurements - let
alone mid-circuit measurements [19, 20]. However, we make this assumption anyway because
measurement-free error-correction schemes are suspected to have substantially lower thresh-
olds [19], and allowing mid-circuit measurements will help with our analysis. Furthermore,
measurements during the computation are physically possible [4, 16]. Something to consider
is that measurements can take a relatively long time. However, we can design fault-tolerant
circuits such that the threshold is not significantly affected [19].

The following two assumptions constrain the classical computations supporting our quan-
tum computation. The first is

3.1. ideal classical computing: all classical computations are error-free.

14



This assumption is unnecessary for a (polylog-overhead) threshold as although errors in our
classical computing processes would add more potential fault locations (reducing the thresh-
old), they could be combated with classical error correction if necessary [1, 21]. Nevertheless,
we take this assumption because it is convenient and physically motivated: classical compu-
tations are robust [21].

Additionally, we ask for

3.2. free classical computing: classical computations take zero time.

This assumption is not totally realistic in practice, and - ironically - if it were to hold,
there would be no need for quantum computers. Despite this, the assumption of free clas-
sical computation is not always necessary for a (low-cost) threshold to exist, as waiting for
classical computations ‘only’ adds more potential fault locations where the quantum com-
puter must wait for a classically computed result. Sufficiently fast and good-scaling classical
computations will not add so many potential fault locations that they prevent a threshold.

Still, an entire sub-field of quantum error correction focuses on improving the runtime of
decoding algorithms without considerably impacting their ability to identify errors accurately
[22, 23, 24]. Noting that a less accurate decoder cannot correct as many errors, causing the
number of malignant errors to grow and the threshold to drop. There are also many other
places where classical processing may slow down a quantum computation [16, 25, 26, 27],
and work has gone into scheduling quantum computations around classical computation’s
limitations and finding other ways to avoid excessive waiting [16].

The last lot of assumptions restrict the noise models we can consider. The most important
of these assumptions is

4.1.‡ locally decaying noise: the probability of a specific f faulty locations in a circuit is
≤ pf where p is the probability of any one fault.

For there to be a threshold, the probability of multiple specific faults occurring in the same
time step needs to be at least exponentially suppressed in the number of specific errors
they cause. Otherwise growing the circuit larger - as fault tolerance requires - can have a
vanishing ability to succeed. Implicit is also that the physical error rate p is small, so that
error correction is not overwhelmed with errors; p is (near-)independent of the computation’s
size, so we can safely scale our computation; and p characterizes all errors in the system.
This last requirement is unnecessary as multi-parameter thresholds exist [28, 29], but - for
simplicity - we will not consider these here.

Experimentalists are still in the process of determining how physically realistic this as-
sumption is. It is difficult to demonstrate in practice as it inherently requires scaling to large
qubit counts - pushing the bounds of devices currently available and going well beyond what
was possible in the past. Nevertheless, recent results indicate that this assumption perhaps
holds sufficiently well for fault tolerance to be effective (at least on small scales) [30].

While not necessary, we will only consider

4.2. stochastic noise: any specific set of f faulty locations occur with a probability pf .

This assumption says that errors are chosen randomly and independently from one another,
i.e. a fixed number of faults occur in any specific set of potential fault locations with the same
probability. However, this assumption is not entirely accurate in practice [31, 32]. This is
made worse by our model assuming that errors occur after gates, while - in reality - gates are

15



continuous evolutions. Errors amid gates can lead to correlated errors called crosstalk errors,
which do not fit this assumption. Furthermore, correlated errors can arise from other sources,
like cosmic rays [30]. Results indicate that non-Markovian environments more accurately
model noise, where a Hamiltonian is used to couple a system to an environmental bath. In the
case of a non-Markovian environment, a threshold still exists under appropriate assumptions
[33].

Finally, we

4.3. ignore leakage errors: errors do not move any qubit outside of its two-dimensional
subspace.

This assumption confines the amplitudes of all states to be within the computational sub-
space of however many (assumedly two-dimensional) qubits are being used. So errors map
computational subspace states to other computational subspace states; consequently, Paulis
(and the identity) can model errors. In reality however, ‘qubits’ are generally implemented
by quantum systems with more than two dimensions. While this can have advantages in
other areas of quantum computing, it means that our assumption is not implicitly satisfied -
as noise can allow physical ‘qubits’ to access levels outside of their computational subspace
[7]. These leakage errors are prevalent in many quantum devices and are very damaging to
quantum error correction as they spread errors throughout the hardware and can corrupt
syndrome measurements [34]. Thresholds still exist in the presence of leakage errors but
require special techniques that effectively transform them into Pauli errors; for instance,
passively through Knill syndrome extraction [26] or actively using leakage-reduction units
[35]. Note however, any additional expense carried by these techniques reduces thresholds.

3.1.2 Concatenation
From the definition of fault tolerance, Definition 1, for arbitrarily accurate computations, a
fault-tolerant construction requires the ability to be scaled using a parameter l. We do this
by concatenating: growing a fault-tolerant protocol’s underlying error-correcting code from
smaller ones. More precisely,

Definition 2 (Concatenation). Concatenation is the process of separately encoding
each of the n physical qubits of an [[n, k, d]] error-correcting code into an [[n′, k′, d′]]
error-correcting code, as illustrated in Figure 3.1.

Indeed we can produce an arbitrarily-high-distance code by repeatedly concatenating an
[[n, 1, 3]] code with itself, as argued in Figure 3.1. In fact, self-concatenating an [[n, 1, 3]]
code will be sufficient to produce a threshold, so, for the sake of simplicity, I restrict all
further discussion to just a single [[n, 1, 3]] code; the arguments I present do generalize to
other code families though [11]. Naturally, we set the level l of the fault-tolerant protocol
to be the number of times this code is concatenated with itself, so we can correct at least
exponentially more errors with each level l, per Figure 3.1.

However, as we continue to concatenate, the size of our circuit also grows: with each
concatenation, we must encode operations in the circuit over exponentially more physical
qubits. So, while our ability to correct errors increases with the level of concatenation, so
too does the number of potential faults. Seeing how these two competing factors balance is
a challenging task that forms much of the remainder of the essay.

16



Figure 3.1: Self-concatenation of an [[n, 1, d]] code. The blue boxes are the code’s encoding
circuit. I show the level l on each layer of concatenation. The left- and right-hand side diagrams
are equivalent as we introduce the notation that w back-slashes on a qubit wire denote w iterations
of concatenation. Notice the Z on the left-hand side diagram and how it propagates through the
encoding circuit, shown as highlights on the relevant qubits. This is a visual representation of how
concatenation impacts distance. Without loss of generality, assume that this Z gives the lowest-
weight logical Pauli of the code (otherwise, select the operator that indeed gives the lowest-weight
logical Pauli, i.e. Pauli-X or Pauli-Y ). The first encoding will propagate this Pauli to the code’s
corresponding logical Pauli per [6]. Hence the operator propagates to a Pauli string of weight equal
to the distance d. These d constituting Paulis then similarly propagate through the next layer
of encoding to Pauli strings of weight at least d each, giving the smallest logical Pauli a weight
of at least d2. All other logical Pauli operators at level 1 must similarly give a minimum weight
logical Pauli of ≥ d2 by level 2, so the level-2 code has a distance of ≥ d2. Apply this argument
recursively to achieve a distance-≥ dl code by level l of concatenation. We can also see using this
visual aid that the number of qubits at each level grows by a factor of n and that no additional
logical operators have been created through concatenating, consistent with no information being
added to the system; accordingly, the concatenated code similarly encodes just k = 1 logical qubit.
So concatenating an [[n, 1, d]] code l ≥ 1 times produces an [[nl, 1,≥ dl]] code. Note that this
argument straightforwardly generalizes to other code constructions.

17



3.1.3 Fault-Tolerant Gadgets
We are yet to fix precisely how in our construction FT (l) maps the logical circuit we want
to simulate C(0) to its fault-tolerant version C(l).

The schematic we select for this is to decompose the circuit we wish to fault-tolerantly
simulate C(0) into its fundamental components (preparing qubits, performing logical gates,
and taking measurements), and then reconstruct it by replacing each of these components
with some fault-tolerant gadgets, defined on our level-l concatenated code. And, because
we want to correct errors, we also insert fault-tolerant error correction gadgets. We place
constraints on these gadgets such that the simulating circuit satisfies the definition of fault
tolerance, Definition 1. The basic idea is that we construct gadgets such that, for a code
capable of correcting t errors with certainty, there are ≤ t outgoing errors on each encoded
block, assuming the gadget encountered ≤ t total errors and faults. We require this constraint
on the propagation of errors so that a circuit remains in a correctable regime if the number of
faults and errors was correctable to begin with. Further, we require that gadgets accurately
simulate their operation when ≤ t errors and faults occur. We make no such constraint
when there are > t errors as the code cannot hope to correct all errors of this weight, so
the computation could fail anyway. Although not essential for this essay, these definitions
of fault-tolerant gadgets are made more exact in [10, 11]. Note, a gadget’s construction in
terms of gates will depend on the code and is not necessarily unique: though non-unique
gadget implementations may not be equivalent in their robustness against noise.

In particular, we encode preparation locations as

(3.A)

where we have placed a level-l fault-tolerant error correction gadget (the circle labeled EC)
after the preparation location. These level-l fault-tolerant error correction gadgets consist
of decoding, correction, and a fault-tolerant version of syndrome extraction. Note that to
be in line with the fault-tolerance literature, I have switched the circuit notation of qubit
preparation, and I will do the same with measurements later.

Many techniques with distinct advantages and disadvantages are available for construct-
ing fault-tolerant error correction gadgets from gates. While these details are not required to
understand the remainder of the essay, an interested reader may find [36] helpful for further
reading. Moreover, fault-tolerant state preparation can be done - for example - by using a
variation of fault-tolerant error correction to encode into the level-l code (measure the code’s
stabilizers and Z logical operators to project onto the code space and then attempt to correct
errors or discard the state and try again if it gives a non-trivial syndrome) and then perform
level-l fault-tolerant gates discussed below to produce the desired state [11].

We encode gates as follows,

(3.B)

18



where level-l gadgets are constructed by replacing all level-0 gadgets (physical operations)
constituting a level-(l− 1) gadget with level-1 gadgets. So one only needs to define a level-1
gate gadget for each gate in a universal gate set to find any level gate gadget and perform
arbitrary fault-tolerant quantum computations.

The simplest implementation for fault-tolerant logical operations is transversal gates:
gates that act bitwise and hence limit the propagation of errors between encoded blocks [1].
I show a transversal CNOT in Diagram 3.G. Unfortunately, a transversal universal gate
set is forbidden [37], so more expensive methods for fault-tolerant computing are required;
including, for example, switching code mid-computation to a code with the same distance
and the desired operation being transversal [38].

Finally, we encode measurements using the mapping

(3.C)

Fault-tolerant syndrome extraction is essentially nothing more than a fault-tolerant measure-
ment (of stabilizer operators), so we can adapt syndrome extraction techniques to perform
level-l fault-tolerant measurements of other operators, like the level-l code’s logical operators.
The logical state can also be operated on with fault-tolerant gates before the measurements
to take arbitrary fault-tolerant measurements.

Putting these gadgets altogether, a qubit in a circuit under a level-l fault-tolerant map-
ping becomes

(3.D)

where the top and bottom of gates are greyed out to denote their potential connection to
other qubits, and the measurement is greyed out because it is not necessarily required.

Constructing our fault-tolerant mapping FT (l) in this way has four significant advantages.
(1) Frequent error correction reduces the likelihood of an unrecoverable accumulation of
errors. (2) Gadgets make it easier to find fault-tolerant constructions: to satisfy the sweeping
definition of fault-tolerance, Definition 1, (we will show) one needs to construct just a finite
number of gadgets, as opposed to an entire circuit. (Note that not all protocols must be
gadget-based to meet the definition of fault tolerance: Definition 1.) (3) The recursive
construction of gadgets leads to a self-similarity between different levels that we will exploit
to find thresholds. (4) The fault-tolerant circuit exhibits a periodic structure, comprising
of some repeated unit cells (often called extended rectangles in the literature), which makes
proving results on the circuit as a whole more tractable. We will choose the unit cell to be

(3.E)

at level-l. (The other unit cells are preparation followed by error correction and error cor-
rection followed by measurement.) Per Diagram 3.D, unit cells overlap. This is intended
to simplify the threshold theorem’s proof; in short, overlapping unit cells leave no room for
errors to occur between unit cells where there is no error correction immediately following to

19



Figure 3.2: Pedagogical example showing the self-similarity of gadgets. The H gates are
Hadamards, H ≡ 1√

2

(
1 1
1 −1

)
. In our construction, we must explicitly define the level-1 gadgets

we require. We do this in the first two diagrams (non-fault-tolerantly and without memory errors)
for a CNOT and a Hadamard on the 3-qubit repetition code. Notice that the recursive definition
of gadgets can equivalently be stated as a level-l gadget is constructed by replacing each gate in
a level-1 gadget with its level-(l − 1) gadget [10]. With this, we construct the level-2 Hadamard
gadget for this code, shown in the third diagram. One could plug in the circuit elements from the
first two diagrams to find this large level-2 gadget in terms of physical gates and qubits. We then
also show the level-3 Hadamard gadget in the fourth diagram, which one could similarly plug in
the lower-level Hadamard and CNOT gadgets for to find the yet larger level-3 gadget in terms
of physical gates and qubits. (An enthusiastic reader attempting this might notice that the gad-
get’s growth is not upper-bounded by powers of the constant factor we might naively expect from
Lemma 2, but this is not an issue as it results from the Hadamard gadget relying on CNOT s whose
gadgets grow faster with level l.) Continuing in this way, see that all levels of the Hadamard gadget
look similar to its level-1 gadget.

20



correct said errors, so the number of potential fault locations in a unit cell does not exceed
that which is contained within the unit cell itself [10, 11].

A threshold theorem based on gadgets and unit cells critically relies on two lemmas, each
respectively answering how often unit cells fail and how gadgets grow with concatenation.
Consider first the former: how often do unit cells fail,

Lemma 1: Unit Cell Failure Probability

A level-l unit cell will fail with probability at most

(cp)2l

/c (3.1)

where p is the physical error rate, and c is a combinatoric constant for the number of
ways to select two potential fault locations in the unit cell (and the threshold’s inverse,
as we will see). Also, fail here means the unit cell has experienced more faults than
the selected code, concatenated l times, can correct with certainty.

Note: the unit cell with the most potential error locations will give an upper bound
on the failure rate of all unit cells.

This lemma is central to the threshold theorem, and its rigorous proof is intricate
[10]. I will sketch the argument to avoid getting bogged down in details.

Sketch of proof: recall that our construction of fault tolerance is built on the recursive
definition that a level-l gadget is constructed by replacing each level-0 gadget in a
level-(l− 1) gadget with a level-1 gadget. This gives a self-similarity between gadgets
of different levels l, where they look like their level-1 gadget when viewed from level
l − 1, as illustrated in Figure 3.2.

The idea is then (approximately), because the code we are concatenating is distance-
3, a level-l gadget fails when two or more of its constituting level-(l − 1) gadgets
fail. In a more intuitive, hand-wavy sense: we perform error correction in the level-1
constituting gadgets first; they fail when there are two or more errors on the physical
qubits, and when they fail, they produce (due to their constraints) up to what is a
logical error on the level-1 concatenated code which then - with other level-1 encoded
qubits - is fed into level-2 error correction (without level-1 error correction checks);
this level-2 error correction fails if it encounters two level-1 logical errors (at level-2
concatenation we can correct two errors that are logical errors in the level-1 code),
which occurs with the highest probability (fewest physical errors) when two of the
level-1 gadgets fail; and so on.

Therefore, a level-l gadget will fail with probability

Pl ≤
Ll∑

i=2

(
Ll

i

)
P i

l−1(1 − Pl−1)i ≤
(
Ll

2

)
P 2

l−1 (3.2)

where Lj is the number of potential fault locations at level-j (e.g. typically one on each
encoded block after each level-(j − 1) gadget), and Pj is the probability of a level-j
error (i.e. an error composed of enough physical errors to overwhelm a level-j error
correction gadget) at any of the Lj+1 potential fault locations. The first bound holds
because we know we succeed with certainty when there is just one error at that level.
The second bound holds due to a non-instructive proof using hypergeometric functions,
or perhaps more intuitively, we enforce two errors at that level on any of that level’s
potential fault locations and do not mind what happens at the other potential fault
locations [39]. (Note that one may achieve a tighter bound on the failure rate here

21



by calculating only the malignant errors that cause a unit cell to fail; our criterion is
pessimistic as not all pairs of errors will necessarily cause failure.)

Realizing that Lj = Lj′ ≡ L ∀j, j′ ≥ 1 due to the self-similarity of the levels
mentioned before, we find

Pl ≤
(
L

2

)
P 2

l−1 (3.3)

which can be recursively reduced down to level-1, where we consider errors afflicting
physical qubits with probability P0 ≡ p. Solving this relation in terms of the physical
error rate p, we find an upper bound on the failure rate of a level-l unit cell to be

Pl ≤ (cp)2l

/c (3.4)

where c ≡
(

L
2

)
.

So a unit cell’s failure rate will be reduced (when the error rate p is below some computable
threshold value Pth ≡ c−1) doubly-exponentially in the level of concatenation. The second
thing to consider is how these gadgets scale with concatenation,

Lemma 2: Concatenation’s Impact on Gadget Size

A level-l gadget will have an upper bound on its number of qubits, depth, potential
fault locations, and gate count of Gl for some constant G.

Proof: each level-1 gadget will have a constant number of qubits (or gates or depth or
potential fault locations). Let the largest of these across all level-1 gadgets be denoted
by the constant G. The result then follows directly from the recursive construction of
higher-level gadgets.

So gadgets grow exponentially in their level of concatenation. With these Lemmas, I can
now present the threshold theorem.

3.2 Threshold Theorem
The threshold value, and in fact the very existence of a threshold at all, depends strongly
on the fault-tolerant construction used and the assumptions made. Indeed, other variations
of the threshold theorem exist - based on different constructions and different assumptions -
and they can offer higher or lower threshold values and different implementation overheads.
I will begin by sketching a proof for the threshold theorem [7, 10, 11, 20] using the con-
struction presented so far: fault-tolerant gadgets, self-concatenated [[n, 1, 3]] codes, and our
assumptions. I will then show another fault-tolerant protocol - in less detail - that indeed
offers a threshold at a more favorable qubit cost asymptotically [9, 13, 24].

So, the threshold theorem based on the fault-tolerant construction I have presented,

Theorem 1: Threshold Theorem

Any ideal circuit C(0) may be simulated fault tolerantly to arbitrarily small accuracy
ϵ > 0 when the error rate p is less than some threshold Pth using a circuit C(l) that has
a depth, qubit count, gate count, and potential fault location count that is at most

22



O (polylog(N/ϵ)) (3.5)

times larger than the ideal circuit C(0), where polylog is logarithm raised to some
power; N is the number of potential fault locations in a noisy version of C(0); and the
level l depends on the desired simulation accuracy ϵ.

Sketch of proof: following [10, 11] closely, we begin by assigning {p(ideal)} and {p(actual)}
to be the probability distribution of our simulating circuit’s output states without
noise and with noise respectively. Quantify the error by the absolute-value norm of
the difference between these distributions:

ϵ ≡ ||p(actual) − p(ideal)|| =
∑

i

|p(actual)
i − p

(ideal)
i |. (3.6)

The simulation cannot be guaranteed to be without logical errors if any of its consti-
tuting unit cells fail (although this seems intuitive, it is intricate to prove [10, 11]).
Thus, using Lemma 1, the level-l simulation’s failure probability has the bound

P̃l ≤ N(cp)2l

/c (3.7)
where p is the physical error rate, c is a constant (the maximum number of ways to
select two errors across all level-1 unit cells), and N is the number of potential fault
locations in a noisy version of the ideal circuit (and hence also at least the number
of locations that the highest-level unit cells in the simulating circuit can fail at i.e.
produce more errors on an encoded block than can be corrected).

Now consider the probability of any one of a level-l simulating circuit’s noisy states,

p
(actual)
i = (1 − P̃l)p(ideal)

i + P̃lp
(fail)
i (3.8)

where {p(fail)} is some probability distribution for the simulating circuit when it fails.
Using this, the statistical error, Equation 3.6, can be rewritten as

ϵ = P̃l

∑
i

|p(fail)
i − p

(ideal)
i | = P̃l||p(fail) − p(ideal)|| ≤ 2P̃l ≤ 2N(cp)2l

/c (3.9)

where in the first inequality, we used that the absolute-value norm of the difference
between two probability distributions cannot exceed 2, and in the second inequality,
we used our bound on P̃l from Equation 3.7. (See that the error in our distribution ϵ
is at least doubly-exponentially suppressed in the level l of concatenation only when
the error rate is below threshold: p < Pth ≡ 1/c.)

Rearrange the above expression to find that for a level-l simulation to achieve at
least some desired level of accuracy ϵ we require a level of concatenation l that satisfies

2l ≥ log(2N/ϵc)
log(1/cp) . (3.10)

Now consider the smallest level of concatenation w that achieves this accuracy ϵ, which
- per the above inequality - must satisfy

w =
⌈
log

(
log(2N/ϵc)
log(1/cp)

)⌉
. (3.11)

23



(Note: we examine just level w because we cannot consider all levels l that satisfy
the condition to achieve an accuracy ϵ at the same time - because we want to find
the cost to achieve this level of accuracy and there is no upper bound on the number
of concatenations l so the maximum size of the circuit is similarly unbounded from
above.)

Using Lemma 2, if the maximum qubit count (or depth or potential fault location
count or gate count) over all level-1 gadgets is denoted by constant G, then the lowest-
level gadget that achieves an accuracy ϵ (i.e. a level-w gadget) will have a qubit count
(or depth or potential fault location count or gate count) of

G′ ≤ Gw = (2w)log(G). (3.12)

Because the error rate p and the number of pairs of potential fault locations c are fixed
constants for a given regime, we can combine the above two expressions to find that
the qubit count, depth, potential fault location count, and gate count of a gadget used
in a simulating circuit achieving accuracy ϵ is no more than O(polylog(N/ϵ)) times
larger than its corresponding physical operation (i.e. its corresponding level-0 gadget
in say an ideal circuit). So, each of these quantities (qubit count, depth, potential
fault location count, and gate count) in a simulating circuit achieving accuracy ϵ will
also respectively grow by a factor of

O(polylog(N/ϵ)) (3.13)

compared to the ideal circuit (albeit a generally different factor for each quantity).
It may not be clear why polylog scaling gadgets yield polylog scaling simulating

circuits, so in this paragraph, I will explain why explicitly. For gates, this follows from
each gate in the ideal circuit corresponding to a gadget whose gate counts scales by
at most this polylog factor. An analogous argument applies to the scaling of potential
fault locations. The depth scales by this polylog factor because parallel gates in the
ideal circuit remain parallel after l levels of concatenation (up to the depth of the
largest gadget, which scales polylogarithmically). The number of qubits needed scale
by this polylog factor also, assuming that qubits are reusable: per our assumptions,
we can run as many gadgets in parallel as there are qubits in the ideal circuit, so our
ancilla qubits must be able to support at most the gadget requiring the greatest qubit
count of any of the gadgets at any one time acting on each qubit in the ideal circuit.
The ancilla qubits of each of those gadgets, which grows by the polylog factor, can then
be reused in the next layer of gadgets, giving our result. Moreover, see that we can
further reduce the qubit overhead at the expense of our circuit’s parallelism; we discuss
a remarkable extension of this idea shortly. Note that if qubits are not reusable, the
number of qubits will grow by a factor dependent on the maximum number of gadgets
acting on any one qubit of the simulating circuit, as this gives an upper bounded factor
on how many more qubits we need per qubit in the ideal computation.

Comments: see that the number of potential fault locations in a noisy copy of the
ideal circuit N is upper bounded by depth (or gate count in negligible-memory-error-
rate regimes) times the qubit count of the ideal circuit, which gives a bound in terms
of different parameters. Finally, notice that the accuracy ϵ is analogous to that of the
fault-tolerance definition, Definition 1, and so this polylog-scaling construction indeed
satisfies the definition of fault tolerance - when the error rate is below threshold.

24



In words, the threshold theorem says that arbitrarily accurate quantum computations are
achievable at a polylogarithmic cost, provided that the error rate is below a certain threshold
value. Achieving sub-threshold error rates is naturally a target for experimental endeavors;
after accomplishing such an error rate, the threshold theorem says the last ingredient required
for reliable quantum computations is more qubits at the same error rate.

While the polylogarithmic scaling in overhead implied by the threshold theorem seems
modest, in practice - outside an asymptotic limit, the overhead will not necessarily be as
favorable: the big-O generally conceals significant constant factors. For low-threshold proto-
cols, these constant factors can be on the order of hundreds, while in protocols with optimized
thresholds, these constant factors reach billions [8, 13]; it is also worth pointing out explicitly
that fault-tolerant protocols with higher thresholds tend to also have larger constant factors
in the overhead. However, this is still an active field of study [11].

While our presentation of the threshold theorem relies on concatenated codes that encode
a single logical qubit, it does not need to. In fact, there can be advantages to considering
families of codes that encode multiple logical qubits per encoded block [7, 13]. Constant-rate
codes provide a remarkable illustration of this point. A code’s rate [1] is defined as the ratio
between logical k and physical n qubits in the code, so a constant rate code has a non-zero rate
in the asymptotic limit of infinitely many physical qubits. By exploiting constant-rate low-
density parity check (LDPC) codes (which should really be called constant-rate LDPC code
families) - characterized by having sparse stabilizer checks and satisfying some additional
properties [13], it has been shown that - using the same assumptions as in Subsection 3.1.1
- there exists a fault-tolerant scheme that provides a threshold result at a qubit cost that is
only a (potentially very small) constant factor bigger than the ideal circuit [13]. The insight
gained here is that the polylog cost in qubit overhead for fault-tolerance is due to codes with
a vanishing rate [13, 24]. Note that a lower bound on the number of qubits necessary for fault
tolerance [9] implies that fault-tolerant protocols with constant qubit overhead are possible
only on families of quantum circuits - defining a quantum algorithm we want to run - with a
depth that grows sub-exponentially in qubit count. Furthermore, this construction heavily
relies on reused qubits, making it incompatible with a low depth - potentially necessitating
worse thresholds, particularly in a regime with high memory error rates. Conversely, it has
also been shown that thresholds exist for fault-tolerant protocols where instead the depth
scales by a (potentially small) constant factor [13].

The asymptotically low qubit overhead afforded by this construction is appealing for it
potentially makes fault tolerance cheaper in non-asymptotic circuits, helping address the
limited qubit count expected in nearer-term quantum devices. However, it relies on the as-
sumption of free classical computing: Subsection 3.1.1. To relax this unrealistic assumption,
this construction uses a subclass of constant-rate LDPC codes called expander codes, which
are equipped with a decoding algorithm that is sufficiently fast (constant time-complexity,
in fact) and corrects enough errors for a (non-zero) threshold [24]. However, LDPC codes
- and expander codes by extension - have drawbacks. They often have complicated logical
operators and are non-local - making logical gates and syndrome extraction more physically
challenging [13]. In fact, on this last point, an LDPC code embedded in finite dimensions
cannot be local while simultaneously maintaining a constant rate with suitable distance scal-
ing [8, 40, 41]. This drawback has led to the non-locality of LDPC codes being subject to
much study and places an upper bound on the effectiveness of (LDPC) codes implementable
on connectivity-limited hardware, currently limiting the practicality of this idea.

25



3.3 Computing Thresholds
In this section, I aim to make thresholds more concrete: we will discuss how to calculate
thresholds, the values of thresholds in practice, and how thresholds ‘look’.

Working again in the framework of concatenation-based fault tolerance, we can calculate
a scheme’s threshold analytically by counting the number of potential fault locations in the
largest level-1 unit cell, per Lemma 1. To get a taste of this, consider an example on the
3-qubit repetition code.

Example 7 (Threshold of the 3-Qubit Repetition Code). Assume here an error model
where single-qubit gates have a single potential fault location that acts on the same
qubit as the gate and that two-qubit gates have two independent potential fault loca-
tions, one on each of the qubits acted on. Because this example is purely pedagogical,
we will simplify matters by further imposing the assumptions that only X errors occur,
that measurements are fault-free, and memory errors are negligible.

Consider the unit cell of a CNOT on the 3-qubit repetition code. As is typical, the
unit cell mapping requires the CNOT to be replaced with the code’s logical CNOT ,
pre- and post-luded by error correction on each encoded block. That is, (ignoring any
part of the diagrams in red for now)

(3.F)

where the logical CNOT is

(3.G)

and said to be transversal. In this construction, we use Shor syndrome extraction [42],
which breaks fault-tolerant error correction into steps

(3.H)

where the I/X1/X2/X3 gate applies any one of these four operations conditioned on
the decoder’s output, and each of these sub-steps is defined as

26



(3.I)

and where the gates with two black dots - say on qubits i and j - connected by a
vertical line are CZi,j ≡ |0⟩i ⟨0|i ⊗ Ij + |1⟩i ⟨1|i ⊗ Zj with implicit identities on other
qubits. These sub-error-correction-steps rely on the fault-tolerant preparation of cat
states, |cat⟩ = (|00⟩ + |11⟩)/

√
2, which we generate using the circuit below.

(3.J)

Error correction is broken into these sub-steps to verify the syndrome before correcting.
While - for brevity - I will not explain in more detail how this construction is fault-
tolerant, a reader can check that indeed this procedure will not fail for any single-qubit
X error, the degree of error correction that this code is rated for.

Turning our attention back to the threshold, we can see in the above diagrams each
potential fault location marked by a red diamond. Also, in red on each gate is the
number of potential fault locations contained in that process. Counting, we find 394
potential fault locations in the unit cell. If we pick errors to occur at any two of these
fault locations, the procedure does not necessarily succeed because it can only correct
with certainty a single (X) error. So an upper bound on the number of ways this
procedure can fail is 394×393

2 = 77421, where we divide by 2 to avoid double counting.
Therefore, from Lemma 1, the threshold is Pth ≥ 1

77421 ∼ 1.3 × 10−5 - assuming that
a CNOT has the most potential fault locations out of any unit cell we want to use
in this error model. And so, as long as the error rate per potential fault location is
below this threshold, scaling the construction to higher levels l of concatenation will
yield arbitrarily accurate simulations.

While illustrative, this example’s threshold relies on unrealistic assumptions about the
nature of errors. Relaxing these assumptions and instead using a surface code [43] - a fam-
ily of LDPC codes (so we are no longer relying on concatenation to scale our code) made
popular for practical implementation by its nearest-neighbor locality in a two-dimensional
Euclidean geometry and giving high thresholds - achieves a threshold of ∼ 6 × 10−3 under a
noise model where X, Y , and Z errors are all equally likely [2]. (Stressing the assumptions
of a model is critical when presenting its threshold. The procedure achieving this threshold
relies on assumptions similar to Subsection 3.1.1. Differences are: the scheme only requires
limited long-range interactions and parallel gates, though it uses many parallel measure-
ments. And the free-classical-computations assumption can be partially relaxed because,
while the scheme uses a time-efficient algorithm, it assumes that the decoder and any other
supporting classical computations - for which there can be many in this measurement-based

27



Figure 3.3: Numerical thresholds. Adapted from [29]. The left graph corresponds to a generally
contrived scenario where the threshold is the physical error rate for which all levels l of fault
tolerance give the same logical error rate. Increasing the level while below threshold suppresses
errors while the opposite is true above-threshold. The right shows a more realistic pseudo-threshold
regime.

[25] approach - take no time.) While error rates are approaching this threshold, the surface
code (or any other code) is yet to be seen on the scale needed for useful quantum computing
[30].

Our example also highlights the difficulty of analytically computing threshold bounds.
This exercise in counting is not always practical, particularly for the more sophisticated
constructions we are usually interested in for implementations. Instead, we often elect to
estimate thresholds with numerical simulations. In short, this is done by programming in
a classical computer the desired error correction procedure and error model, accordingly
applying errors using Monte Carlo methods, and then checking if the error correction pro-
cedure succeeded in fixing the error. Over many iterations at select error rates, we find an
estimate of the error correction procedure’s (logical) failure rate; using statistical standard
error, achieving an uncertainty 0 < δ ≤ 1 requires ∼ δ−2 iterations. By repeating this over
different physical error rates, one can plot a graph of logical error rate vs physical error
rate. If the failure probability in Equation 3.4 is an equality, repeating this process for an
additional fault-tolerance level l yields an estimate of the threshold: the physical error rate
at which different levels fail with the same probability, illustrated on the left of Figure 3.3.
In a general and more physical case, the failure probability of our construction in Equation
3.4 (or from other constructions) remains an inequality due to asimilarities that shift the
proportion of malignant errors in different fault-tolerant levels l; for example, from more
complicated error models - such as errors occurring with distinct probabilities for particular
operations, from elaborate rules for scaling the fault-tolerant procedure - like non-self-similar
gadgets, or particular decoders. In this case, instead, pseudo-thresholds arise: the physical
error rates where level-l ≥ 1 curves intersect the level-0 curve, shown on the right side of
Figure 3.3. While being below the level-w pseudo-threshold means level-w fault tolerance
offers protection, unlike the threshold, it does not guarantee that scaling the level l will
be advantageous. To find the actual threshold, one must examine the asymptotic level of
concatenation, where the pseudo-thresholds converge to the true threshold. Using Pauli

28



errors and Clifford circuits, as we often can in error correction [6], these simulations are
time-efficient due to the Gottesman-Knill theorem [44, 45]; however, more general circuits
and error models can make these simulations intractable.

Finally, to elaborate on the practical cost of useful and robust quantum computations, it
is estimated that breaking modern encryption protocols using a quantum computer, currently
an intractable problem on classical computers, will require 8 hours and ∼ 2×107 qubits with
below-threshold error rates [46]. On this, fault-tolerant protocols’ overheads can be sensitive
to how far below threshold the error rate is. This is important for practical purposes given
the current and likely continued expense of qubits. For instance, in a large surface code, an
error rate of an order of magnitude below threshold can reduce the qubit overhead also by
an order of magnitude [47].

29



4
Conclusion

I aimed to show in this essay that due to the threshold theorem, fault-tolerant methods
provide a path forward on the mission of building noise-robust quantum computers. Indeed,
this essay introduces fault tolerance as a way of mapping some ideal circuit that performs
some desired computation to a new simulating circuit that allows for any desired level of
accuracy in a noisy environment; presents a fault-tolerant construction that leads to a version
of the threshold theorem; and discusses the threshold theorem and its implications.

There is still much work to be done on fault tolerance. The main two goals for exper-
imentalists should unsurprisingly be to achieve error rates (well) below threshold and add
more qubits to quantum devices while retaining sub-threshold error rates. A more spe-
cific research direction for experimentalists is to comprehensively investigate if the threshold
theorem’s assumptions are indeed satisfied in real devices and study quantum noise more
generally. Neither of these have received as much attention as they deserve, likely because
it is difficult to do so on our currently very limited quantum hardware. However, they are
nonetheless important. The first of these two suggestions is important because the future of
quantum computing is believed to rely on the threshold theorem, which itself relies critically
on these assumptions. The second is important because higher threshold protocols have been
found using insights into quantum noise’s properties [28].

Regarding future research for theorists, the aim is to design protocols that increase
thresholds and reduce overheads. I will briefly discuss some of the specific frontiers of
fault-tolerance research that I think are most exciting. One such direction is to try and
consolidate the seeming trade-off between depth and qubit count in fault-tolerant protocols,
discussed in [13]. This would involve designing a fault-tolerant protocol that simultaneously
achieves (near-)constant qubit count and depth scaling. I believe a starting point for this
work includes measurement- [25] or fusion-based [16] quantum computing, as these mod-
els naturally have less of a distinction between space and time [48]. Moving on, because
LDPC codes have shown promise in efficient fault tolerance, it would also make sense to
try and address their biggest drawback: their non-locality; for example, one may consider
how to layout qubits in a two-dimensional architecture to minimize the long-range inter-
actions between qubits. Work has recently begun towards this goal [49, 50]. Additionally,
it is believed that LDPC codes admit more efficient fault-tolerant logical gates than they
currently have, which could also be the subject of further research [8]. Work could also focus

30



on optimizing fault-tolerance’s overhead for specific hardware. There is, for example, a slew
of work in this area built around the aforementioned fusion-based model on photonic devices
[16]. Another emerging idea, as realized by flag qubits [51, 52], is that instead of passively
preventing error propagation, fault-tolerant protocols can consider where errors occur in the
circuit in both time and space. For example, a naive non-fault-tolerant method of syndrome
extraction combined with flag qubits is fault tolerant as the flag qubits allow us to figure out
how the errors probably propagated during syndrome extraction and actively correct them
accordingly [51, 52]. Perhaps this idea can be applied to potentially reduce the cost of other
fault-tolerant procedures too - maybe by following the ideas proposed in [8]. In particular,
it would be interesting to see if flag qubits could help make the efficient non-fault-tolerant
encoding circuits I proposed in [6] fault tolerant; to achieve lower-overhead encoding.

On the outlook of fault-tolerant quantum computing, I have hopefully conveyed in this
essay the immense cost of fault tolerance and the relatively low (but not impossibly low)
thresholds it achieves; these results are despite many simplifying assumptions, and fault
tolerance’s outlook with these assumptions relaxed is yet starker. Large-scale fault-tolerant
quantum computation is surely many years away, ∼ O(10) years in my view. That said,
recent results [30] suggest that we may be on the cusp of small-scale fault tolerance. I believe
these early implementations of fault tolerance will dramatically accelerate fault-tolerance
theory research by giving insights into errors that can be exploited, as we have already seen
in [28]. That is, I conjecture that while full-scale fault tolerance may be decades away,
fault-tolerant quantum computing will face its most pivotal period over the next few years.

31



References

[1] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cam-
bridge University Press, 2000.

[2] A. Fowler, A. Stephens, and P. Groszkowski. High-threshold universal quantum com-
putation on the surface code. Physical Review A, 80(5), 2009.

[3] S. Debnath, N. Linke, C. Figgatt, K. Landsman, K. Wright, and C. Monroe. Demon-
stration of a small programmable quantum computer with atomic qubits. Nature,
536(7614):63–66, 2016.

[4] E. Deist, Y. Lu, J. Ho, M. Pasha, J. Zeiher, Z. Yan, and D. Stamper-Kurn. Mid-Circuit
Cavity Measurement in a Neutral Atom Array. Physical Review Letters, 129:203602,
2022.

[5] D. Gottesman. Stabilizer Codes and Quantum Error Correction. Caltech (PhD Thesis),
1997.

[6] M. Gorman. Ancilla-free preparation of quantum error-correcting codes. The University
of Queensland (Honours Thesis - preparing for publication), 2022.

[7] E. Knill, R. Laflamme, and W. Zurek. Resilient quantum computation: error models
and thresholds. Proceedings of the Royal Society of London. Series A: Mathematical,
Physical and Engineering Sciences, 454(1969):365–384, 1998.

[8] D. Gottesman. Opportunities and Challenges in Fault-Tolerant Quantum Computation.
arXiv:2210.15844, 2022.

[9] O. Fawzi, A. Müller-Hermes, and A. Shayeghi. A Lower Bound on the Space Over-
head of Fault-Tolerant Quantum Computation. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022.

[10] P. Aliferis, D. Gottesman, and J. Preskill. Quantum Accuracy Threshold for Concate-
nated Distance-3 Codes. Quantum Information and Computation, 6(2):97–165, 2006.

[11] D. Gottesman. An Introduction to Quantum Error Correction and Fault-Tolerant Quan-
tum Computation. arXiv:0904.2557, 2009.

[12] C. Figgatt, A. Ostrander, N. Linke, K. Landsman, D. Zhu, D. Maslov, and C. Mon-
roe. Parallel entangling operations on a universal ion-trap quantum computer. Nature,
572(7769):368–372, 2019.

[13] Daniel Gottesman. Fault-Tolerant Quantum Computation with Constant Overhead.
Quantum Information and Computation, 14(15–16):1338–1372, 2014.

32

https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE#overview
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.80.052312
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.80.052312
https://www.nature.com/articles/nature18648
https://www.nature.com/articles/nature18648
https://link.aps.org/doi/10.1103/PhysRevLett.129.203602
https://link.aps.org/doi/10.1103/PhysRevLett.129.203602
https://thesis.library.caltech.edu/2900/2/THESIS.pdf
https://doi.org/10.1098%2Frspa.1998.0166
https://doi.org/10.1098%2Frspa.1998.0166
https://arxiv.org/pdf/2210.15844
https://drops.dagstuhl.de/opus/volltexte/2022/15664/
https://drops.dagstuhl.de/opus/volltexte/2022/15664/
https://www.rintonpress.com/journals/qicabstracts/qicabstracts6-2.html
https://www.rintonpress.com/journals/qicabstracts/qicabstracts6-2.html
https://arxiv.org/pdf/0904.2557
https://arxiv.org/pdf/0904.2557
https://www.nature.com/articles/s41586-019-1427-5
https://arxiv.org/pdf/1310.2984


[14] A. Noiri, K. Takeda, T. Nakajima, T. Kobayashi, A. Sammak, G. Scappucci, and
S. Tarucha. A shuttling-based two-qubit logic gate for linking distant silicon quantum
processors. Nature Communications, 13(1), 2022.

[15] D. Aharonov, M. Ben-Or, R. Impagliazzo, and N. Nisan. Limitations of Noisy Reversible
Computation. arXiv:9611028, 1996.

[16] S. Bartolucci, P. Birchall, H. Bombin, H. Cable, C. Dawson, M. Gimeno-Segovia,
E. Johnston, K. Kieling, N. Nickerson, M. Pant, F. Pastawski, T. Rudolph, and C. Spar-
row. Fusion-based quantum computation. Nature Communications, 2023.

[17] M. DeCross, E. Chertkov, M. Kohagen, and M. Foss-Feig. Qubit-reuse compilation with
mid-circuit measurement and reset. arXiv:2210.08039, 2022.

[18] B. Barber, N. Gillespie, and J. Taylor. Post-selection-free preparation of high-quality
physical qubits. arXiv:2209.05391, 2022.

[19] D. DiVincenzo and P. Aliferis. Effective Fault-Tolerant Quantum Computation with
Slow Measurements. Physical Review Letters, 98:020501, 2007.

[20] D. Aharonov and M. Ben-Or. Fault-Tolerant Quantum Computation with Constant
Error. Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Com-
puting, page 176–188, 1997.

[21] T. Szkopek, V. Roychowdhury, D. Antoniadis, and J. Damoulakis. Physical Fault Tol-
erance of Nanoelectronics. Physical Review Letters, 106:176801, 2011.

[22] V. Kolmogorov. Blossom V: a new implementation of a minimum cost perfect matching
algorithm. Mathematical Programming Computation, 1:43–67, 2009.

[23] N. Delfosse and N. Nickerson. Almost-linear time decoding algorithm for topological
codes. Quantum, 5:595, 2021.

[24] O. Fawzi, A. Grospellier, and A. Leverrier. Constant Overhead Quantum Fault Tol-
erance with Quantum Expander Codes. Communications of the ACM, 64(1):106–114,
2020.

[25] H. Briegel, D. Browne, W. Dür, R. Raussendorf, and M. Van den Nest. Measurement-
based quantum computation. Nature Physics, 5(1):19–26, 2009.

[26] E. Knill. Scalable quantum computing in the presence of large detected-error rates.
Physical Review A, 71:042322, 2005.

[27] T. Tansuwannont and K. Brown. Adaptive syndrome measurements for Shor-style error
correction. arXiv:2208.05601, 2022.

[28] J. Ataides, D. Tuckett, S. Bartlett, S. Flammia, and B. Brown. The XZZX surface code.
Nature Communications, 12(1), 2021.

[29] K. Svore, A. Cross, I. Chuang, and A. Aho. A Flow-Map Model for Analyzing Pseu-
dothresholds in Fault-Tolerant Quantum Computing. Quantum Information and Com-
putation, 6(3):193–212, 2006.

[30] Google Quantum AI. Suppressing quantum errors by scaling a surface code logical
qubit. Nature, 614:676–681, 2023.

33

https://www.nature.com/articles/s41467-022-33453-z
https://www.nature.com/articles/s41467-022-33453-z
https://arxiv.org/pdf/quant-ph/9611028
https://arxiv.org/pdf/quant-ph/9611028
https://www.nature.com/articles/s41467-023-36493-1
https://arxiv.org/abs/2210.08039
https://arxiv.org/abs/2210.08039
https://arxiv.org/abs/2209.05391
https://arxiv.org/abs/2209.05391
https://link.aps.org/doi/10.1103/PhysRevLett.98.020501
https://link.aps.org/doi/10.1103/PhysRevLett.98.020501
https://arxiv.org/pdf/quant-ph/9906129
https://arxiv.org/pdf/quant-ph/9906129
https://link.aps.org/doi/10.1103/PhysRevLett.106.176801
https://link.aps.org/doi/10.1103/PhysRevLett.106.176801
https://link.springer.com/article/10.1007/s12532-009-0002-8
https://link.springer.com/article/10.1007/s12532-009-0002-8
https://quantum-journal.org/papers/q-2021-12-02-595/
https://quantum-journal.org/papers/q-2021-12-02-595/
https://dl.acm.org/doi/pdf/10.1145/3434163
https://dl.acm.org/doi/pdf/10.1145/3434163
https://www.nature.com/articles/nphys1157
https://www.nature.com/articles/nphys1157
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.71.042322
https://arxiv.org/abs/2208.05601#:~:text=The%20Shor%20fault%2Dtolerant%20error,errors%20caused%20by%20gate%20faults.
https://arxiv.org/abs/2208.05601#:~:text=The%20Shor%20fault%2Dtolerant%20error,errors%20caused%20by%20gate%20faults.
https://www.nature.com/articles/s41467-021-22274-1
https://dl.acm.org/doi/10.5555/2011686.2011687
https://dl.acm.org/doi/10.5555/2011686.2011687
https://www.nature.com/articles/s41586-022-05434-1
https://www.nature.com/articles/s41586-022-05434-1


[31] F. Pollock L. Hollenberg K. Modi G. White, C. Hill. Demonstration of non-Markovian
process characterisation and control on a quantum processor. Nature Communications,
11(6301), 2020.

[32] J. Morris, F. Pollock, and K. Modi. Quantifying non-Markovian Memory in a Super-
conducting Quantum Computer. Open Systems and Information Dynamics, 29(02),
2022.

[33] B. Terhal and G. Burkard. Fault-tolerant quantum computation for local non-Markovian
noise. Physical Review A, 71:012336, 2005.

[34] N. Brown, A. Cross, and K. Brown. Critical faults of leakage errors on the surface code.
2020 IEEE International Conference on Quantum Computing and Engineering, pages
286–294, 2020.

[35] P. Aliferis and B. Terhal. Fault-Tolerant Quantum Computation for Local Leakage
Faults. Quantum Information and Computation, 7(1):139–156, 2007.

[36] M. Gorman and T. Farrelly. A review of syndrome extraction in quantum error correc-
tion. The University of Queensland (preparing for publication), 2022.

[37] B. Eastin and E. Knill. Restrictions on Transversal Encoded Quantum Gate Sets.
Physical Review Letters, 102(11), 2009.

[38] T. Jochym-O’Connor and R. Laflamme. Using Concatenated Quantum Codes for Uni-
versal Fault-Tolerant Quantum Gates. Physical Review Letters, 112(1), 2014.

[39] J. Preskill. Quantum Computation. California Institute of Technology (notes), 2021.

[40] S. Bravyi, D. Poulin, and B. Terhal. Tradeoffs for Reliable Quantum Information Storage
in 2D Systems. Physical Review Letters, 104(5), 2010.

[41] N. Baspin and A. Krishna. Quantifying Nonlocality: How Outperforming Local Quan-
tum Codes Is Expensive. Physical Review Letters, 129(5), 2022.

[42] P. Shor. Fault-tolerant quantum computation. arXiv:9605011, 1997.

[43] A. Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1):2–
30, 2003.

[44] D. Gottesman. The Heisenberg Representation of Quantum Computers. arXiv:9807006,
1998.

[45] S. Aaronson and D. Gottesman. Improved simulation of stabilizer circuits. Physical
Review A, 70(5), 2004.

[46] C. Gidney and M. Ekerå. How to factor 2048 bit RSA integers in 8 hours using 20
million noisy qubits. Quantum, 5:433, 2021.

[47] A. Fowler, M. Mariantoni, J. Martinis, and A. Cleland. Surface codes: Towards practical
large-scale quantum computation. Physical Review A, 86:032324, 2012.

[48] N. Nickerson and H. Bombín. Measurement based fault tolerance beyond foliation.
arXiv:1810.09621, 2018.

[49] N. Berthusen and D. Gottesman. work in progress. 2023.

34

https://www.nature.com/articles/s41467-020-20113-3
https://www.nature.com/articles/s41467-020-20113-3
https://www.worldscientific.com/doi/10.1142/S123016122250007X
https://www.worldscientific.com/doi/10.1142/S123016122250007X
https://link.aps.org/doi/10.1103/PhysRevA.71.012336
https://link.aps.org/doi/10.1103/PhysRevA.71.012336
https://ieeexplore.ieee.org/document/9259963
https://dl.acm.org/doi/abs/10.5555/2011706.2011715
https://dl.acm.org/doi/abs/10.5555/2011706.2011715
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.102.110502
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.010505
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.010505
http://theory.caltech.edu/~preskill/ph229/
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.104.050503
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.104.050503
https://doi.org/10.1103%2Fphysrevlett.129.050505
https://doi.org/10.1103%2Fphysrevlett.129.050505
https://arxiv.org/abs/quant-ph/9605011
https://www.sciencedirect.com/science/article/pii/S0003491602000180?via%3Dihub
https://arxiv.org/abs/quant-ph/9807006
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.70.052328
https://quantum-journal.org/papers/q-2021-04-15-433/
https://quantum-journal.org/papers/q-2021-04-15-433/
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.86.032324
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.86.032324
https://arxiv.org/abs/1810.09621


[50] C. Pattison, A. Krishna, and J. Preskill. Hierarchical memories: Simulating quantum
LDPC codes with local gates. arXiv:2303.04798, 2023.

[51] R. Chao and B. Reichardt. Quantum Error Correction with Only Two Extra Qubits.
Physical Review Letters, 121:050502, 2018.

[52] R. Chao and B. Reichardt. Flag Fault-Tolerant Error Correction for any Stabilizer
Code. PRX Quantum, 1:010302, 2020.

35

https://arxiv.org/abs/2303.04798
https://arxiv.org/abs/2303.04798
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.050502
https://link.aps.org/doi/10.1103/PRXQuantum.1.010302
https://link.aps.org/doi/10.1103/PRXQuantum.1.010302

	Introduction
	Quantum Error Correction and Fault Tolerance
	Quantum Error Correction
	Encoding
	Logical Operations
	Noise
	Syndrome Extraction
	Decoding
	Correction

	Idea of Fault Tolerance
	Definition of Fault Tolerance

	Fault-Tolerant Constructions and Thresholds
	A Fault Tolerant Construction
	Assumptions
	Concatenation
	Fault-Tolerant Gadgets

	Threshold Theorem
	Computing Thresholds

	Conclusion
	References

